
Sorted Runtimes
Here is a video walkthrough of the solutions.

We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N), Worst Case: Θ(N2)

Once we have 100 runs of size N/100, insertion sort will take best case Θ(N)

and worst case Θ(N2) time. The constant number of linear time merging

operations don’t add to the runtime.

(b) We can only swap adjacent elements in selection sort.

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N2), Worst Case: Θ(N2)

The best case and worst case don’t change since swapping at most doubles the

work each iteration, which produces the same asymptotic runtime as normal

selection sort.

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N log(N)), Worst Case: Θ(N log(N))

Doing an extra N work each iteration of quicksort doesn’t asymptotically

change the best case runtime, but it improves the worst case runtime to be the

same as the best case. Recall the best case runtime of quicksort is Θ(N log(N)).

You may wonder, why don’t we always do this then? Well, there are a couple

reasons. First, if the initial array is randomly sorted, the worst case behavior

is very improbably. Second, the added linear work per level doesn’t change

anything asymptotically, but it does slow down the algorithm in practice.

(d) We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N log(N)), Worst Case: Θ(N log(N))

While a max-heap is better, we can make do with a min-heap by placing

the smallest element at the right end of the list until the list is sorted in

https://youtu.be/VaaJQTfkdGo


descending order. Once the list is in descending order, it can be sorted in

ascending order with a simple linear time pass.

(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

Best Case: Θ( ), Worst Case: Θ( )

Solution: Best Case: Θ(N), Worst Case: Θ(N)

Recall that insertion sort takes Θ(N + K) time, where K is the number

of inversions. If K is at most N, then, insertion sort has the best and

worst case runtime of Θ(N). Here is an explanation for why no sorting

algorithm can surpass this. Notice for our algorithm to terminate we

either need to address every inversion or look at every element. Since

there are at most N inversions, knowing that we have addressed every

inversion would take us at least Θ(N) time. Looking at every element in

the list would also take us Θ(N) time. In either case, we see the runtime

of any sorting algorithm cannot be faster than Θ(N).

• There is exactly 1 inversion

Best Case: Θ( ), Worst Case: Θ( )

Solution: Best Case: Θ(1), Worst Case: Θ(N)

The inversion may be the first two elements, in which case constant time

is needed. Or, it may involve elements at the end, in which case N time

is needed. It can be proven quite simply that no sorting algorithm can

achieve a better runtime than above for the best and worst case.

• There are exactly (N2 −N)/2 inversions

Best Case: Θ( ), Worst Case: Θ( )

Solution: Best Case: Θ(N), Worst Case: Θ(N)

If a list has N(N − 1)/2 inversions, it means it is sorted in descending

order! So, it can be sorted in ascending order with a simple linear time

pass. We know that reversing any array is a linear time operation, so the

optimal runtime of any sorting algorithm is Θ(N).


