
Slightly Harder (Spring 2017, MT2)
Here is a video walkthrough of the solutions.

Give the runtime of the following functions in Θ or O notation as requested. Your

answer should be as simple as possible with no unnecessary leading constants or

lower order terms. For f5, your bound should be as tight as possible (so don’t just

put O(NNM !) or similar for the second answer).

1 public static void f4(int N) {

2 if (N == 0) {return;}

3 f4(N / 2);

4 f4(N / 2);

5 f4(N / 2);

6 f4(N / 2);

7 g(N); // runs in Θ(N2) time

8 }

Runtime: Θ()

Solution: Runtime: Θ(N2 logN)

Explanation: We will try a sample input, N = 4.

f4(4)

f4(2) f4(2) f4(2) f4(2)

f4(1) f4(1) f4(1) f4(1) f4(1) f4(1) f4(1) f4(1)

f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0)

For the first layer, the time needed is dominated by g(N), which runs in Θ(N2)

time. Therefore, the time taken at this level is 42.

At the second level, each call is 22. But there are four calls to f4(2), so the total

time is (4)(2)2 = 42.

In general, at the i-th level, the total time is (4i)(N/2i)2, which is equal to exactly

N2.

Therefore:

f4(N) Nˆ2

f4(N/2) f4(N/2) f4(N/2) f4(N/2) (4*Nˆ2)/4

f4(1) f4(1) f4(1) f4(1) f4(1) f4(1) f4(1) f4(1) (8*Nˆ2)/8

f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) f4(0)f4(0) (16*Nˆ2)/16

Each layer takes total time N2, and the number of layers is log2N (one layer when

N = 2, three layers when N = 8, etc.). The total time is
∑logN

i=0 N2 = Θ(N2 logN).

https://youtu.be/DE32iLG1TY8

1 public static void f5(int N, int M) {

2 if (N < 10) {return;}

3 for (int i = 0; i <= N % 10; i++) {

4 f5(N / 10, M / 10);

5 System.out.println(M);

6 }

7 }

Runtime: O()

Solution:

Runtime: O(N)

Explanation:

Again, we can think of this as a tree. Each call to f5 does N%10 work. We can

consider this to be constant, since even as N gets massive, N%10 will always be

between 0 and 9, inclusive. So let’s assume the worst case, which means we assume

N%10 = 9 all the time. This means we make 10 calls to f5 each time. Now, how

many levels does our tree have before it ends? We are dividing N by 10 each call

and we end when we hit N < 10. So, there are log(N) levels to our tree. We can

now sum up the work done at each level:

1 + 10 + 102 + ... + 10logN =

N∑
i=0

10i =
1 − 10logN

1 − 10

Remember that asymptotics ignores constant coefficients and lower order terms! So

we can get rid of all those to get:

10logN = O(N)

