Sl{ippify (Spring 717, MTl)

Here is a video walkthrough of the solutions.

We have the following IntList class, as defined in lecture and lab, with an added

skippify function. Suppose that we define two IntLists as follows.

IntList A = IntList.list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
IntList B = IntList.list(9, 8, 7, 6, 5, 4, 3, 2, 1);

Fill in the method skippify such that the result of calling skippify on A and B

20

21

22

23

24

25

26

27

28

29

30

31

32

33

are as below:
- After calling A.skippify(), A: (1, 3, 6, 10)
- After calling B.skippify(), B: (9, 7, 4)

public class IntList {
public int first;
public IntList rest;

@Override
public boolean equals(Object o) { ... }
public static IntList list(int... args) { ... }

public void skippify() {
IntList p = this;
int n = 1;
while (p != null) {

IntList next =

for () Ao
if () Ao
}

}

https://youtu.be/MNBWnkOva0E?t=259

20

21

22

23

24

25

26

Solution:

public class IntList {
public int first;
public IntList rest;

@Override
public boolean equals(Object o) { ... }
public static IntList list(int... args) { ... }

public void skippify() {
IntList p = this;
int n = 1;
while (p != null) {
IntList next = p.rest;
for (int i =0; i <n; i+=1) {
if (next == null) {
break;
}
next = next.rest;
3
p.rest = next;
p = p.rest;

n++;

’

3

Explanation: Looking at IntList A, we only need to change the rest attribute of
IntlList instances 1, 3, and 6. To achieve this, we will use the for loop to find the
new rest attribute (which we will store in next) of the current IntList instance (p).
The outer while loop enables us to repeat these actions for, in our case, IntList
instances 3 and 6. The int n will increment by one each iteration and gives us
the number of iterations in the for loop, i.e. how many IntList instances to skip.
Finally, the if check accounts allows us to exit the for loop early if we ever hit the
end of the Linked List.

