
Prim’s
Here is a video walkthrough of the solutions.

(a) In an arbitrary graph, Prim’s can change the priority of a vertex v in the

priority queue a maximum of times and a minimum of times.

Assume v is not the start vertex and the graph is connected and undirected.

Give tight bounds specific to v. Assume we set all priorities to infinity initially.

Solution:

In an arbitrary graph, Prim’s can change the priority of a vertex v in the

priority queue a maximum of degree(v) times and a minimum of 1 times.

Explanation:

Recall that the degree(v) of v is the neighbors v has. It’s possible that we

every neighbor finds a better way of getting to v, as the second part shows.

As such, degree(v) is the maximum number of change priority operations we

can call for v since we can only call changePriority(v, ...) when are at a

neighbor of v.

Next, since all vertices start at priority infinity and the graph is connected,

the final priority of each vertex has to change. As such, 1 is the minimum

number of times. For an example, every time we run Prim’s, the first vertex

we visit after the start vertex has its priority changed exactly once. Convince

yourself why this is the case.

(b) Suppose we run Prim’s from A on the graph below.

Fill in the missing edges in the graph to the right so that

1. The priority of C is changed the maximum number of times, i.e. the

first blank from above.

Solution:

There are many possible solutions to this part. One such solution is

setting AC to 9, BC to 7, and CF to 6. To generalize, a valid solution simply

https://youtu.be/FtLidgKggZk?t=1446


needs to satisfy the following inequalities:

(a) BC > 4

(b) AC > GC > BC > FC

Explanation:

The intuition for why these inequalities must hold is twofold. First, we

need C to be the last vertex visited. To ensure this is the case, edges AC

and BC must be greater than 4, which is accounted for in the check BC >

4. The reason they must be greater than 4 is to ensure that we visit F

before C.

Second, we need to ensure that every edge we consider finds a better

way of getting to C. To ensure this is the case, notice that we visit vertices

in this order: A → G → B → F, assuming that C is the last vertex vis-

ited. Accordingly, we must impose the following inequality between the

adjacent edges of C: AC > GC > BC > FC.

2. The priority of every vertex is changed the minimum number of times,

i.e. the second blank from above.

Solution:

There are many possible solutions to this part. One such solution is

setting AC to 1, BC to 100, and CF to 101. To generalize, a valid solution

simply needs AC to be lighter than BC, GC, and FC or AC to be lighter than

AG and AB.

Explanation:

The intuition for the first solution (make AC lighter than BC, GC, and FC)

is that we want to change the priority of C exactly once. The first edge

we consider adjacent to C is AC, so this must be the smallest adjacent edge.

The second, equally valid solution (make AC lighter than AG and AB) works

because C becomes the first vertex we visit, and we change its priority only

once.


