20

21

22

23

24

25

26

27

28

29

30

MSD Radix Sort

Here is a video walkthrough of the solutions.

Recursively implement the method msd below, which runs MSD radix sort on a List
of Strings and returns a sorted List of Strings. For simplicity, assume that each

string is of the same length. You may not need all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort,
but any sort works! For the subroutine here, you may use the stableSort method,
which sorts the given list of strings in place, comparing two strings by the given
index. Finally, you may find following methods of the List class helpful:

1. List<E> subList(int fromIndex, int toIndex). Returns the portion of this
list between the specified fromIndex, inclusive, and toIndex, exclusive.

2. addAll(Collection<? extends E> c). Appends all of the elements in the
specified collection to the end of this list, in the order that they are returned

by the specified collection’s iterator.

public static List<String> msd(List<String> items) {

return ;

private static List<String> msd(List<String> items, int index) {

if () {

return items;

3

List<String> answer = new ArraylList<>();
int start = 0;

for (int end = 1; end <= items.size(); end += 1) {

if () {

}

return answer;
b
/* You don't need to understand the implementation of this method to use it! =*/
private static void stableSort(List<String> items, int index) {
items.sort(Comparator.comparingInt(o -> o.charAt(index)));

https://youtu.be/8zgZ0yvdfvg

20

21

22

23

24

25

3

Solution:

public static List<String> msd(List<String> items) {
return msd(items, 0);

private static List<String> msd(List<String> items, int index) {
if (items.size() <=1 || index >= items.get(0).length()) {
return items;
3
List<String> answer = new ArraylList<>();
stableSort(items, index);
int start = 0;
for (int end = 1; end <= items.size(); end += 1) {

if (end == items.size() || items.get(start).charAt(index) != items.get(end).charAt(index)) {

List<String> subList = items.subList(start, end);
answer.addAll (msd(subList, index + 1));
start = end;

}

return answer;

/* You don't need to understand the implementation of this method to use it! =*/

private static void stableSort(List<String> items, int index) {
items.sort(Comparator.comparingInt(o -> o.charAt(index)));

b

Explanation: MSD sort starts with the leftmost (most significant) digit, grouping
and sorting all elements by that digit. It then proceeds recursively on each group.
The helper function msd(items, index) tells us which index we’re currently sorting
items by, which is initialized to @ by the original msd function. The base case is if
there is 1 item or less (the list is already sorted), or if we’ve sorted every possible
index.

Otherwise, we use stablesort to sort by the current index. Note that the subroutine
to sort by index must be stable; otherwise we lose the ordering imposed by the
previous indices we’ve already sorted.

Inside the loop, start and end track the start and end indices of our curent group
(items that share the same value at index). If our current end differs from start,
we must have reached an item with a different value at index, so we take everything
from start: end (exclusive) to get the current group, recursively sorting that group

on the next index.

