
Kruskal’s

(a) We want to run Kruskal’s, but we have no cycle detection, so we terminate upon

inserting V − 1 edges. Will this produce a valid MST on the graph above? If

not, determine which edge(s) need to be changed, and to what. If there are

many possibilities, choose the one that involves the minimum added/removed

weight.

Assume ties are broken alphabetically, and edges are written in alphabetical

order, and compared as such. For instance, if edges (A, Z) and (E, H) are

equal, (A, Z) would be chosen before (E, H).

Solution:

This will not produce a valid MST. The problem is that we consider IM before

adding the last vertex S to the MST. So, for Kruskal’s to work, you either need

to

1. change IM to 5

2. change ES to 4

so that the edge ES is considered before IM.

Here is a video walkthrough of the solutions.

(b) After completing the previous part, Sohum wondered if it’s possible to run

Kruskal’s with limited cycle detection. More specifically, he pondered: what if

we can only detect a maximum of k cycles during one run of Kruskal’s?

Looking at the specific instance of a 6 vertex graph, what is the minimum

value of k for which we can ensure that Kruskal’s will always work?

Solution: 6

Explanation:

To find the minimum value of k for which we can ensure Kruskal’s will always work,

https://youtu.be/FtLidgKggZk?t=2967


we want to find the maximum number of edges we could possibly consider in one

run of Kruksal’s before terminating. Well, when do we terminate in Kruskal’s? We

terminate after adding V - 1 edges, i.e. when the MST contains all the vertices. So,

if we haven’t finished Kruskal’s, it means that we haven’t added V - 1 edges and

we have two or more components that are not connected to each other. In order

for there to be two or more components that are not connected to each other, note

that there must be some cut that we haven’t considered any crossing edges of. For

instance, looking at the partial state of an example of Kruskal’s below, notice that

we haven’t considered any crossing edges of two cuts.

Note that:

1. orange edges: in the MST

2. black edges: edges considered but cause cycle

3. light grey edges: edges yet to be considered)

Next, since we want to find the maximum number of edges we could possibly con-

sider in Kruksal’s before terminating, let’s focus the case when Kruskal’s is about

to finish and we have considered the maximum number of edges prior to this point.

If Kruskal’s is about to finish, it means there is only one more edge to be added,

i.e. one more cut to find a crossing edge through. Since we want to consider the

maximum number of edges, we want the number of edges in this ”final” cut to be

as few as possible, since the more edges there are in the final cut, the fewer edges

we could’ve considered prior to this point. And, we want there to be as many edges

as possible ”outside” of this cut.

Looking at the two possible ”almost finished” states of Kruskal’s above, i.e. states



with two connected components remaining and one cut to find a crossing edge

through, notice the number of edges in the cut on the right is far fewer than the

number of edges on the cut on the left. To generalize this finding, the fewest num-

ber of crossing edges we can have in any cut between sets A and B occurs when

the set A or B contains only one vertex. As such, the maximum number of edges

we can consider in one run of Kruskal’s occurs in the specific instance of the right

graph above where the crossing edges of one ”small” cut in the graph haven’t been

considered while every edge in the remaining graph has.

Notice that out of the edges we’ve considered in the right graph above, the 4 orange

edges don’t need cycle detection since they are part of the MST. However, for the

remaining 6 black edges, they need cycle detection, and we can say the minimum

value of k is 6.

If that was a lot, here is a video walkthrough of the solutions.

https://youtu.be/yO3Y5NN0VFg

