Heap Mystery

Here is a video walkthrough of the solutions.
We are given the following array representing a min-heap where each letter represents a unique number. Assume the root of the min-heap is at index zero, i.e. A is the root. Note that there is no significance of the alphabetical ordering, i.e. just because B precedes C in the alphabet, we do not know if B is less than or greater than C.

Array: $[\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}]$
Four unknown operations are then executed on the min-heap. An operation is either a removeMin or an insert. The resulting state of the min-heap is shown below.

Array: $[\mathrm{A}, \mathrm{E}, \mathrm{B}, \mathrm{D}, \mathrm{X}, \mathrm{F}, \mathrm{G}]$
(a) Determine the operations executed and their appropriate order. The first operation has already been filled in for you!

1. removeMin()
2. \qquad
3. \qquad
4.

Solution:

1. removeMin()
2. insert (X)
3. removeMin()
4. insert(A)

Explanation: We know immediately that A was removed. Then, after looking at the final state of the min-heap, we see that C was removed. Then, for A to remain in the min-heap, we see that A must have been inserted afterwards. And, after seeing a new value X in the min-heap, we see that X must have been inserted as well. We just need to determine the relative ordering of the insert(X) in between the operations removeMin() and insert(A), and we see that the insert (X) must go before both.
(b) Fill in the following comparisons with either $>,<$, or ? if unknown. We recommend considering which elements were compared to reach the final array.

1. X \qquad D
2. X \qquad C
3. B \qquad C
4. G \qquad X

Solution:

1. X ? D
2. $\mathrm{X}>\mathrm{C}$
3. $\mathrm{B}>\mathrm{C}$
4. $\mathrm{G}<\mathrm{X}$

Reasoning:

1. X is never compared to D
2. X must be greater than C since C is removed after X 's insertion.
3. B must also be greater than C otherwise the second call to removeMin would have removed B
4. X must be greater than G so that it can be "promoted" to the top after the removal of C . It needs to be promoted to the top to land in its new position.
