
Hashing Gone Crazy
Here is a video walkthrough of the solutions.

For this question, use the following TA class for reference.

1 public class TA {

2 int charisma;

3 String name;

4 TA(String name, int charisma) {

5 this.name = name;

6 this.charisma = charisma;

7 }

8 @Override

9 public boolean equals(Object o) {

10 TA other = (TA) o;

11 return other.name.charAt(0) == this.name.charAt(0);

12 }

13 @Override

14 public int hashCode() {

15 return charisma;

16 }

17 }

Assume that the hashCode of a TA object returns charisma, and the equals method

returns true if and only if two TA objects have the same first letter in their name.

Assume that the ECHashMap is a HashMap implemented with external chaining as

depicted in lecture. The ECHashMap instance begins at size 4 and, for simplicity,

does not resize. Draw the contents of map after the executing the insertions below:

1 ECHashMap<TA, Integer> map = new ECHashMap<>();

2 TA sohum = new TA("Sohum", 10);

3 TA vivant = new TA("Vivant", 20);

4 map.put(sohum, 1);

5 map.put(vivant, 2);

6

7 vivant.charisma += 2;

8 map.put(vivant, 3);

9

10 sohum.name = "Vohum";

11 map.put(vivant, 4);

12

13 sohum.charisma += 2;

14 map.put(sohum, 5);

15

16 sohum.name = "Sohum";

17 TA shubha = new TA("Shubha", 24);

18 map.put(shubha, 6);

https://youtu.be/VlizaeUyFBc


Solution:

Explanation:

Line 4: sohum has charisma value 10. 10 % 4 = 2, so sohum is placed in bucket 2

with value 1.

0: [], 1: [], 2: [(sohum, 1)], 3: []

Line 5: vivant is placed in bucket 0 with value 2.

0: [(vivant, 2)], 1: [], 2: [(sohum, 1)], 3: []

Line 7: Increasing the charisma value of vivant does not cause it to be rehashed!

(This is why modifying objects in a Hashmap is dangerous–it can change the hash-

code of your object and make it impossible to find which bucket it belongs to).

Line 8: vivant now has charisma 4, so bucket 2 also has a node pointing to vivant,

with value 3. (Note that the two vivants refer to the same object).

0: [(vivant, 2)], 1: [], 2: [(sohum, 1), (vivant, 3)], 3: []

Line 11, 12: vivant with charisma 22 hashes to bucket 2. However, since we

have changed sohum’s name to be "Vohum", vivant.equals(sohum) returns true.

Since we are hashing a key that is already present in the dictionary according to

.equals, we replace sohum’s old value with the new value, 4.

0: [(vivant, 2)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []

Line 13, 14: sohum with charisma 12 hashes to bucket 0. However, since we

have changed sohum’s name to be "Vohum", sohum.equals(vivant) returns true.

Since we are hashing a key that is already present in the dictionary according to

.equals, we replace vivant’s old value with the new value, 5.

0: [(vivant, 5)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []

Line 16, 17, 18: shuba hashes to bucket 0. shuba.equals(vivant) returns false,

so we add a new node after vivant with value 6.

0: [(vivant, 5), (shuba, 6)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []


