
Flip Flop
Here is a video walkthrough of the solutions.

Suppose we have the flip function as defined below. Assume the method unknown

returns a random integer between 1 and N, exclusive, and runs in constant time.

For each definition of the flop method below, give the best and worst case runtime

of flip in Θ(.) notation as a function of N.

1 public static void flip(int N) {

2 if (N <= 100) {

3 return;

4 }

5 int stop = unknown(N);

6 for (int i = 1; i < N; i++) {

7 if (i == stop) {

8 flop(i, N);

9 return;

10 }

11 }

12 }

(a) public static void flop(int i, int N) {

flip(N - i);

}

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N), Worst Case: Θ(N)

Explanation: Consider some arbitrary value of stop. When stop = x, we do

x work inside of flip (the for loop) and recursively call flip(N - x) through

flop. This results in a total of N / x calls before reaching our base case, and

x work per call, for a total of Θ(N) work. Note that this holds for any value

of x, so our best and worst case are the same.

(b) public static void flop(int i, int N) {

int minimum = Math.min(i, N - i);

flip(minimum);

flip(minimum);

}

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(1), Worst Case: Θ(N log(N))

Explanation: In the best case, stop = 1. This hits the base case immediately,

so we make 2 calls to flip then stop for Θ(1) work.

In the worst case, stop = N / 2. This results in flip making 2 recursive calls

https://youtu.be/_3jK71-TJ0Y


to itself with the argument N / 2. Note the similarity of this recurrence and

mergesort; the runtime is the same Θ(N logN).

(c) public static void flop(int i, int N) {

flip(i);

flip(N - i);

}

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N), Worst Case: Θ(N2)

Explanation: In the best case, suppose stop = 1. Then flip(N) makes

recursive calls to flip(1) and flip(N - 1), the first of which terminates

immediately in the base case. flip(N - 1) then calls flip(1) and flip(N -

2). The pattern is a linear recursion: constant work per call, N calls total for

Θ(N) work.

In the worst case, suppose stop = N - 1. Note that this case is symmetrical

to the best case in terms of recursive calls; however we do work proportional

to N inside of flip each time because of the for loop. The overall work is

(N − 1) + (N − 2) + (N − 3) + ... + 2 + 1 = Θ(N2).


