Flip Flop

Here is a video walkthrough of the solutions.
Suppose we have the flip function as defined below. Assume the method unknown returns a random integer between 1 and N, exclusive, and runs in constant time. For each definition of the flop method below, give the best and worst case runtime of flip in $\Theta($.$) notation as a function of N$.

```
public static void flip(int N) {
    if (N <= 100) {
        return;
    }
    int stop = unknown(N);
    for (int i = 1; i < N; i++) {
        if (i == stop) {
            flop(i, N);
            return;
        }
    }
}
```

(a) public static void flop(int i, int N) \{
flip(N - i);
\}

Best Case: $\Theta(\quad)$, Worst Case: $\Theta(\quad)$

Solution:

Best Case: $\Theta(N)$, Worst Case: $\Theta(N)$
Explanation: Consider some arbitrary value of stop. When stop $=x$, we do x work inside of flip (the for loop) and recursively call flip $(N-x)$ through flop. This results in a total of N / x calls before reaching our base case, and x work per call, for a total of $\Theta(N)$ work. Note that this holds for any value of x, so our best and worst case are the same.
(b) public static void flop(int i, int N) \{
int minimum = Math.min(i, $N-i)$;
flip(minimum) ;
flip(minimum);
\}
Best Case: $\Theta(\quad)$, Worst Case: $\Theta(\quad)$

Solution:

Best Case: $\Theta(1)$, Worst Case: $\Theta(N \log (N))$
Explanation: In the best case, stop $=1$. This hits the base case immediately, so we make 2 calls to flip then stop for $\Theta(1)$ work.
In the worst case, stop $=N / 2$. This results in flip making 2 recursive calls
to itself with the argument $N / 2$. Note the similarity of this recurrence and mergesort; the runtime is the same $\Theta(N \log N)$.
(c) public static void flop(int i, int N) \{
flip(i);
flip(N - i);
\}
Best Case: $\Theta(\quad)$, Worst Case: $\Theta(\quad)$

Solution:

Best Case: $\Theta(N)$, Worst Case: $\Theta\left(N^{2}\right)$
Explanation: In the best case, suppose stop $=1$. Then flip(N) makes recursive calls to $\mathrm{flip}(1)$ and $\mathrm{flip}(\mathrm{N}-1)$, the first of which terminates immediately in the base case. $\operatorname{flip}(N-1)$ then calls $f l i p(1)$ and $f l i p(N-$ 2). The pattern is a linear recursion: constant work per call, N calls total for $\Theta(N)$ work.
In the worst case, suppose stop $=N-1$. Note that this case is symmetrical to the best case in terms of recursive calls; however we do work proportional to N inside of flip each time because of the for loop. The overall work is $(N-1)+(N-2)+(N-3)+\ldots+2+1=\Theta\left(N^{2}\right)$.

