
Finish the Runtimes
Here is a video walkthrough of the solutions.

Below we see the standard nested for loop, but with missing pieces!

1 for (int i = 1; i < ______; i = ______) {

2 for (int j = 1; j < ______; j = ______) {

3 System.out.println("We will miss you next semester Akshit :(");

4 }

5 }

For each part below, some of the blanks will be filled in, and a desired runtime will

be given. Fill in the remaining blanks to achieve the desired runtime! There may

be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: Θ(N2)

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < i; j = ______) {

3 System.out.println("This is one is low key hard");

4 }

5 }

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < i; j = j + 1) {

3 System.out.println("This is one is low key hard");

4 }

5 }

Explanation: Remember the arithmetic series 1+2+3+4+. . . +N = Θ(N2).

We get this series by incrementing j by 1 per inner loop.

(b) Desired runtime: Θ(log(N))

1 for (int i = 1; i < N; i = i * 2) {

2 for (int j = 1; j < ______; j = j * 2) {

3 System.out.println("This is one is mid key hard");

4 }

5 }

Any constant would work here, 2 was chosen arbitrarily.

1 for (int i = 1; i < N; i = i * 2) {

2 for (int j = 1; j < 2; j = j * 2) {

3 System.out.println("This is one is mid key hard");

4 }

5 }

Explanation: The outer loop already runs log n times, since i doubles each

time. This means the inner loop must do constant work (so any constant j <

https://youtu.be/ViU1dNjHeNg?t=600


k would work).

(c) Desired runtime: Θ(2N )

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < ______; j = j + 1) {

3 System.out.println("This is one is high key hard");

4 }

5 }

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < Math.pow(2, i); j = j + 1) {

3 System.out.println("This is one is high key hard");

4 }

5 }

Explanation: Remember the geometric series 1 + 2 + 4 + ... + 2N = Θ(2N ).

We notice that i increments by 1 each time, so in order to achieve this 2N

runtime, we must run the inner loop 2i times per outer loop iteration.

(d) Desired runtime: Θ(N3)

1 for (int i = 1; i < ______; i = i * 2) {

2 for (int j = 1; j < N * N; j = ______) {

3 System.out.println("yikes");

4 }

5 }

1 for (int i = 1; i < Math.pow(2, N); i = i * 2) {

2 for (int j = 1; j < N * N; j = j + 1) {

3 System.out.println("yikes");

4 }

5 }

Explanation: One way to get N3 runtime is to have the outer loop run N

times, and the inner loop run N2 times per outer loop iteration. To make the

outer loop run N times, we need stop after multiplying i = i * 2 N times,

giving us the condition i < Math.pow(2, N). To make the inner loop run N2

times, we can simply increment by 1 each time.


