Asymptotic Expressions

Here is a video walkthrough of the solutions.

- (a) Which of the following expressions are true? Check all that apply. Equations between asymptotic expressions, such as O(f) = O(g) simply mean that all functions that are O(f) are also O(g) and vice-versa. An expression such as $O(f) \subseteq O(g)$ means that all functions that are O(f) are also O(g).
 - $\Box \ \Theta(1000*N^3 + N*\log(N)) = \Theta(N^3)).$
 - $\Box \text{ For all } k \geq 0, \, O(N^k) \subseteq O(N^{k+1})).$
 - \Box For all $k \ge 0$, $\Omega(N^k) \subseteq \Omega(N^{k+1})$.
 - \Box For positive-valued functions f and g, if $f = \Omega(g)$ and g = O(h), $f = \Omega(h)$.
 - \Box For positive-valued functions f and g, if $f = \Omega(g)$ and h = O(g), $f = \Omega(h)$.

Solution:

- $\Theta(1000 * N^3 + N * \log(N)) = \Theta(N^3)).$ **True**, we ignore lower order terms.
- For all $k \ge 0$, $O(N^k) \subseteq O(N^{k+1})$. **True**, every function that is $O(N^k)$ is also $O(N^{k+1})$ since $O(N^{k+1})$ is a less tight bound.
- $\Box \text{ For all } k \ge 0, \ \Omega(N^k) \subseteq \Omega(N^{k+1})).$ **False**, a function that runs in $\Theta(N^k)$ runs in $\Omega(N^k)$ but not $\Omega(N^{k+1})$.
- \Box For positive-valued functions f and g, if $f = \Omega(g)$ and g = O(h), $f = \Omega(h)$.

False, f and h are lower bounded by g, but we can't say anything their relation.

For positive-valued functions f and g, if $f = \Omega(g)$ and h = O(g), $f = \Omega(h)$.

True, f is lower bounded by g and g upper bounds h, so f is also lower bounded by h.

- (b) For positive-valued functions $f_0 \dots f_k$, where we define $f_i(n) = 1 + f_{n\%i}(n)$ for $i \ge 1$ and $f_0(n) = 1$, which of the following are true? Check all that apply. Assume that n > k.
 - \Box The evaluation of $f_k(n)$ may run forever.
 - $\Box f_k(n) = \Omega(log(k))$, with respect to k.
 - $\Box f_k(n) = O(k)$, with respect to k.
 - $\Box f_k(n) = \Theta(1)$, with respect to n.
 - \Box If n = k! 1, $f_k(n) = \Theta(k)$, with respect to k.

Solution:

 \Box The evaluation of $f_k(n)$ may run forever.

False, notice that n% i is bounded between 0 and i - 1, so $f_k(n)$ will recurse on some function $f_i(n)$ where i < k, and eventually the base case must be hit.

- $\Box f_k(n) = \Omega(\log(k)), \text{ with respect to } k.$ False, $f_k(n)$ could take constant time, e.g. when $n = 2 \times k$.
- $f_k(n) = O(k)$, with respect to k. **True**, see the last part for the worst case behavior of $f_k(n)$
- $f_k(n) = \Theta(1)$, with respect to n. **True**, since $f_k(n)$ recurses on $f_{n\%k}(n)$, the remainder operation bounds n%k between 0 and k-1, which is independent of n.
- If n = k! 1, $f_k(n) = \Theta(k)$, with respect to k.

True, notice that k! is divisible by every number between 1 and k, so when k! - 1 is divided by any i between 1 and k, it will have remainder i - 1. As such, $f_k(n)$ will recurse on $f_{k-1}(n)$, which will recurse on $f_{k-2}(n)$, and so on until $f_0(n)$ is hit, taking linear time with respect to k.