
1 Challenge: A Puzzle
Consider the partially filled classes for A and B as defined below:

1 public class A {

2 public static void main(String[] args) {

3 ___ y = new ___();

4 ___ z = new ___();

5 }

6

7 int fish(A other) {

8 return 1;

9 }

10

11 int fish(B other) {

12 return 2;

13 }

14 }

15

16 class B extends A {

17 @Override

18 int fish(B other) {

19 return 3;

20 }

21 }

Note that the only missing pieces of the classes above are static/dynamic types!

Fill in the four blanks with the appropriate static/dynamic type — A or B — such

that the following are true:

1. y.fish(z) equals z.fish(z)

2. z.fish(y) equals y.fish(y)

3. z.fish(z) does not equal y.fish(y)

Solution: Here is a video walkthrough of the solutions.

1 public class A {

2 public static void main(String[] args) {

3 A y = new B();

4 B z = new B();

5 }

6 ...

7 }

Explanation: To get to this solution, it’s helpful to write a matrix of possible

static/dynamic types, and eliminate ones that don’t work. First note that because

of (3), y and z cannot both be static type B; otherwise only B.fish(B other) would

ever get called. Also, they cannot both have static type A: method arguments only

check static types, so only A.fish(A other) would ever get called, violating (3).

Since we know A and B must have different static types, let’s try assigning static

https://youtu.be/_V0GYWFADkY


type A to y and static type B to z. (z must also have dynamic type B, since an

object’s dynamic type either the same as or a subclass of it’s static type). Checking

the result of y.fish(z), we see that this will choose the method signature fish(B

other) inside A at compile time. However, for z.fish(z), the compiler goes to B

and chooses B.fish(B other). In order for these two method calls to be equal, the

dynamic type of y must be B.

This gives us our final answer: y has static type A, dynamic type B; and z has

static and dynamic type B. We check (2) to make sure this works. z.fish(y) will

go to B first, but since B only has a method for fish(B other), we must go to it’s

superclass and choose fish(A other) in A at compile time. y.fish(y) choose the

same method, A.fish(A other). During runtime, we check the dynamic type of z,

B, which does not have a matching signature, so both these calls return 2 as desired.


	Challenge: A Puzzle

