
DMS Comparator
Here is a video walkthrough of the solution.

Implement the Comparator DMSComparator, which compares Animal instances. An

Animal instance is greater than another Animal instance if its dynamic type is

more specific. See the examples to the right below.

In the second and third blanks in the compare method, you may only use the

integer variables predefined (first, second, etc), relational/equality oper-

ators (==, >, etc), boolean operators (&& and ||), integers, and parentheses.

As a challenge, use equality operators (== or !=) and no relational operators (>, <=,

etc). There may be more than one solution.

class Animal {

int speak(Dog a) { return 1; }

int speak(Animal a) { return 2; }

}

class Dog extends Animal {

int speak(Animal a) { return 3; }

}

class Poodle extends Dog {

int speak(Dog a) { return 4; }

}

Examples:

Animal animal = new Animal();

Animal dog = new Dog();

Animal poodle = new Poodle();

compare(animal, dog) // negative number

compare(dog, dog) // zero

compare(poodle, dog) // positive number

1 public class DMSComparator implements __________________________ {

2

3 @Override

4 public int compare(Animal o1, Animal o2) {

5 int first = o1.speak(new Animal());

6 int second = o2.speak(new Animal());

7 int third = o1.speak(new Dog());

8 int fourth = o2.speak(new Dog());

9

10 if (__) {

11 return 0;

12

13 } else if (___) {

14 return 1;

15 } else {

16 return -1;

17 }

18 }

19 }

https://youtu.be/okl7oNfnScw

Solution:

1 public class DMSComparator implements Comparator<Animal> {

2

3 @Override

4 public int compare(Animal o1, Animal o2) {

5 int first = o1.speak(new Animal());

6 int second = o2.speak(new Animal());

7 int third = o1.speak(new Dog());

8 int fourth = o2.speak(new Dog());

9

10 if (first == second && third == fourth) {

11 return 0;

12 } else if (first > second || third > fourth) {

13 return 1;

14 } else {

15 return -1;

16 }

17 }

18 }

Explanation:

We know that we should return 0 when the dynamic types of o1 and o2 are the

same. However, just checking first == second is insufficient. Consider the case

where you have o1 with dynamic type Dog and o2 with dynamic type Poodle. During

compilation, both of these will choose the method speak(Animal a). During run-

time, first will be 3, since Dog.speak(Animal a) overrides Animal.speak(Animal

a). second will also be 3: Poodle does not have a speak(Animal) method, so it goes

to its superclass Dog and finds Dog.speak(Animal a). Thus, we must also check

third == fourth in the first case.

For the case of returning 1, note that if o1 is a Poodle while o2 is not, we should

return 1. In this case, fourth = o2.speak(Dog) will return 4, while o1.speak(Dog)

will return 1. Thus, we check if fourth > third; if it is, o1 is more specific than

o2. Then, we consider the case of o1 being a Dog and o2 being an Animal. In this

case, o1.speak(Animal) will return 3 (since at runtime tye dynamic type Dog also

has a speak(Animal) method) whereas o2.speak(Animal) will return 2. This gives

us the other condition, first > second.

Challenge Solution:

1 public class DMSComparator implements Comparator<Animal> {

2

3 @Override

4 public int compare(Animal o1, Animal o2) {

5 int first = o1.speak(new Animal());

6 int second = o2.speak(new Animal());

7 int third = o1.speak(new Dog());

8 int fourth = o2.speak(new Dog());

9

10 if (first == second && third == fourth) {

11 return 0;

12 } else if (third == 4 || (first == 3 && second == 2)) {

13 return 1;

14 } else {

15 return -1;

16 }

17 }

18 }

Explanation:

The first if statement is the same as the solution above.

If we reach the second case and o1 is a Poodle, we know o2 must be a Dog or an

Animal (or we would have returned 0 in the first case). Thus, we can immediately

return 1 if o1 is a Poodle. To check if o1 is a Poodle, we can simply check if third

== 4 (since only Poodles can return 4).

There is one other case in which we should return 1: when o1 is a Dog and o2 is an

Animal. If o1 is a Dog, o2.speak(Animal) should return 3, so we check if first ==

3. To check if o2 is an Animal, we ensure that o2.speak(Animal) returns 2 (if it

had dynamic type Dog or Poodle, it would use the method in Dog which returns 3).

Thus, we add the condition second == 2.

