
Asymptotics is Fun!
Here is a video walkthrough for all parts of the problem.

(a) Using the function g defined below, what is the runtime of the following func-

tion calls? Write each answer in terms of N.

1 void g(int N, int x) {

2 if (N == 0) {

3 return;

4 }

5 for (int i = 1; i <= x; i++) {

6 g(N - 1, i);

7 }

8 }

g(N, 1): Θ( )

g(N, 2): Θ( )

Solution:

g(N, 1): Θ(N)

Explanation: When x is 1, the loop gets executed once and makes a single

recursive call to g(N - 1). The recursion goes g(N), g(N - 1), g(N - 2), and

so on. This is a total of N recursive calls, each doing constant work.

g(N, 2): Θ(N2)

Explanation: When x is 2, the loop gets executed twice. This means a call

to g(N) makes 2 recursive calls to g(N - 1, 1) and g(N - 1, 2).

From the first part, we know g(..., 1) does linear work. Thus, this is a recur-

sion tree with N levels, and the total work is (N−1)+(N−2)+ ...+1 = Θ(N2)

work.

(b) Suppose we change line 6 to g(N - 1, x) and change the stopping condition

in the for loop to i <= f(x) where f returns a random number between 1 and

x, inclusive. For the following function calls, find the tightest Ω and big O

bounds.

1 void g(int N, int x) {

2 if (N == 0) {

3 return;

4 }

5 for (int i = 1; i <= f(x); i++) {

6 g(N - 1, x);

7 }

8 }

g(N, 2): Ω( ), O( )

g(N, N): Ω( ), O( )

https://youtu.be/3NsgNyzOOmQ


Solution:

g(N, 2): Ω(N), O(2N )

g(N, N): Ω(N), O(NN )

Explanation: Suppose f(x) always returns 1. Then, this is the same as case

1 from (a), resulting in a linear runtime.

On the other hand, suppose f(x) always returns x. Then g(N, x) makes x

recursive calls to g(N - 1, x), each of which makes x recursive calls to g(N -

2, x), and so on, so the recursion tree has 1, x, x2 ... nodes per level. Outside

of the recursion, the function g does x work per node. Thus, the overall work

is x ∗ 1 + x ∗ x + x ∗ x2 + ... + x ∗ xN−1 = x(1 + x + x2 + ... + xN−1).

Plug in x = 2 to get 2(1 + 2 + 22 + ... + 2N−1) = O(2N ) for our first upper

bound. Plug in x = N to get N(1 +N +N2 + ...+NN−1) = O(NN ) (ignoring

lower-order terms).


