Asymptotics is Fun!

Here is a video walkthrough for all parts of the problem.
(a) Using the function g defined below, what is the runtime of the following function calls? Write each answer in terms of N .

```
void g(int N, int x) {
    if (N == 0) {
            return;
    }
    for (int i = 1; i <= x; i++) {
        g(N - 1, i);
    }
}
g(N, 1): \Theta( )
g(N, 2): \Theta( )
```


Solution:

$\mathrm{g}(\mathrm{N}, 1): ~ \Theta(N)$
Explanation: When x is 1 , the loop gets executed once and makes a single recursive call to $g(N-1)$. The recursion goes $g(N), g(N-1), g(N-2)$, and so on. This is a total of N recursive calls, each doing constant work.
$\mathrm{g}(\mathrm{N}, 2): \Theta\left(N^{2}\right)$
Explanation: When x is 2, the loop gets executed twice. This means a call to $g(N)$ makes 2 recursive calls to $g(N-1,1)$ and $g(N-1,2)$.
From the first part, we know $g(\ldots, 1)$ does linear work. Thus, this is a recursion tree with N levels, and the total work is $(N-1)+(N-2)+\ldots+1=\Theta\left(N^{2}\right)$ work.
(b) Suppose we change line 6 to $g(N-1, x)$ and change the stopping condition in the for loop to $i<=f(x)$ where f returns a random number between 1 and x, inclusive. For the following function calls, find the tightest Ω and big O bounds.

```
void g(int N, int x) {
    if (N == 0) {
            return;
    }
    for (int i = 1; i <= f(x); i++) {
        g(N - 1, x);
    }
}
\(\mathrm{g}(\mathrm{N}, 2): \Omega(\quad), \mathrm{O}(\quad)\)
\(\mathrm{g}(\mathrm{N}, \mathrm{N}): \Omega(\quad), \mathrm{O}(\quad)\)
```


Solution:

$\mathrm{g}(\mathrm{N}, 2): \Omega(N), \mathrm{O}\left(2^{N}\right)$
$\mathrm{g}(\mathrm{N}, \mathrm{N}): \Omega(N), \mathrm{O}\left(N^{N}\right)$
Explanation: Suppose $f(x)$ always returns 1. Then, this is the same as case 1 from (a), resulting in a linear runtime.
On the other hand, suppose $f(x)$ always returns x. Then $g(N, x)$ makes x recursive calls to $g(N-1, x)$, each of which makes x recursive calls to $g(N-$ $2, \mathrm{x}$), and so on, so the recursion tree has $1, \mathrm{x}, x^{2} \ldots$ nodes per level. Outside of the recursion, the function g does x work per node. Thus, the overall work is $x * 1+x * x+x * x^{2}+\ldots+x * x^{N-1}=x\left(1+x+x^{2}+\ldots+x^{N-1}\right)$.
Plug in $x=2$ to get $2\left(1+2+2^{2}+\ldots+2^{N-1}\right)=O\left(2^{N}\right)$ for our first upper bound. Plug in $\mathrm{x}=\mathrm{N}$ to get $N\left(1+N+N^{2}+\ldots+N^{N-1}\right)=O\left(N^{N}\right)$ (ignoring lower-order terms).

