
Partition
Implement partition, which takes in an IntList lst and an integer k, and de-

structively partitions lst into k IntLists such that each list has the following

properties: Firstly, It is the same length as the other lists. If this is not possible,

i.e. lst cannot be equally partitioned, then the later lists should be one element

smaller. For example, partitioning an IntList of length 25 with k = 3 would result

in partitioned lists of lengths 9, 8, and 8. Secondly, its ordering is consistent with

the ordering of lst, i.e. items in earlier in lst must precede items that are later.

These lists should be put in an array of length k, and this array should be returned.

For instance, if lst contains the elements 5, 4, 3, 2, 1, and k = 2, then a possible

partition (note that there are many possible partitions), is putting elements 5, 3, 2

at index 0, and elements 4, 1 at index 1.

You may assume you have the access to the method reverse, which destructively re-

verses the ordering of a given IntList and returns a pointer to the reversed IntList.

You may not create any IntList instances. You may not need all the lines.

Hint: You may find the % operator helpful.

1 public static IntList[] partition(IntList lst, int k) {

2 IntList[] array = new IntList[k];

3 int index = 0;

4 IntList L = _____________________________________

5 while (L != null) {

6

7 _____________________________________________

8

9 _____________________________________________

10

11 _____________________________________________

12

13 _____________________________________________

14

15 _____________________________________________

16

17 _____________________________________________

18

19 _____________________________________________

20 }

21 return array;

22 }


