Fill in the Blanks

Fill in the following blanks related to min-heaps. Let N is the number of elements in the min-heap. For the entirety of this question, assume the elements in the min-heap are distinct.

1. removeMin has a best case runtime of \qquad and a worst case runtime of \qquad .
2. insert has a best case runtime of \qquad and a worst case runtime of \qquad -.
3. A \qquad or \qquad traversal on a min-heap may output the elements in sorted order. Assume there are at least 3 elements in the min-heap.
4. The fourth smallest element in a min-heap with 1000 elements can appear in
\qquad places in the heap.
5. Given a min-heap with $2^{N}-1$ distinct elements, for an element

- to be on the second level it must be less than \qquad element(s) and greater than \qquad element(s).
- to be on the bottommost level it must be less than \qquad element(s) and greater than \qquad element(s).

Hint: A complete binary tree (with a full last-level) has $2^{N}-1$ elements, with N being the number of levels.

