Fill in the Blanks

Fill in the following blanks related to min-heaps. Let N is the number of elements in the min-heap. For the entirety of this question, assume the elements in the min-heap are **distinct**.

- 1. removeMin has a best case runtime of ______ and a worst case runtime of ______.
- insert has a best case runtime of ______ and a worst case runtime of ______.
- 3. A ______ or _____ traversal on a min-heap may output the elements in sorted order. Assume there are at least 3 elements in the min-heap.
- 4. The fourth smallest element in a min-heap with 1000 elements can appear in _____ places in the heap.
- 5. Given a min-heap with $2^N 1$ distinct elements, for an element
 - to be on the second level it must be less than ______ element(s) and greater than ______ element(s).
 - to be on the bottommost level it must be less than ______ element(s) and greater than ______ element(s).

Hint: A complete binary tree (with a full last-level) has $2^N - 1$ elements, with N being the number of levels.