Asymptotic Expressions

- (a) Which of the following expressions are true? Check all that apply. Equations between asymptotic expressions, such as O(f) = O(g) simply mean that all functions that are O(f) are also O(g) and vice-versa. An expression such as $O(f) \subseteq O(g)$ means that all functions that are O(f) are also O(g).
 - $\Box \ \Theta(1000*N^3 + N*\log(N)) = \Theta(N^3)).$
 - \Box For all $k \ge 0$, $O(N^k) \subseteq O(N^{k+1})$.
 - $\Box \text{ For all } k \geq 0, \, \Omega(N^k) \subseteq \Omega(N^{k+1})).$
 - \Box For positive-valued functions f and g, if $f = \Omega(g)$ and g = O(h), $f = \Omega(h)$.
 - \Box For positive-valued functions f and g, if $f = \Omega(g)$ and h = O(g), $f = \Omega(h)$.
- (b) For positive-valued functions $f_0 \dots f_k$, where we define $f_i(n) = 1 + f_n \%_i(n)$ for $i \ge 1$ and $f_0(n) = 1$, which of the following are true? Check all that apply. Assume that n > k.
 - \Box The evaluation of $f_k(n)$ may run forever.
 - $\Box f_k(n) = \Omega(log(k))$, with respect to k.
 - $\Box f_k(n) = O(k)$, with respect to k.
 - $\Box f_k(n) = \Theta(1)$, with respect to n.
 - \Box If n = k! 1, $f_k(n) = \Theta(k)$, with respect to k.