
Containers
a) (1 Points). Suppose that we have the Container abstract class below, with the

abstract method pour and the method drain. Implement the method drain so that

all the liquid is drained from the container, i.e. amountFilled is set to 0. Return

true if any liquid was drained, and false otherwise. In other words, return true if

and only if there is liquid in the container prior to the function being called. You

may add a maximum of 5 lines of code. Note that the staff solution uses 3. You

may only add code to the drain method. (Summer 2021 MT1)

1 public abstract class Container {

2 /* Keeps track of the total amount of liquid in the container */

3 public int amountFilled;

4

5 public boolean drain() {

6

7

8

9

10

11 } // You may use at most 5 lines of code, i.e. this bracket should be on line 11 or earlier.

12

13 abstract int pour(int amount);

14 }

b) (1.5 Points). Finish implementing the WaterBottle class so that it is a

Container. You should only add code to the blanks, i.e. fill in the pour method

and the class signature.

As stated in the Container class, the pour method should pour amount into the

container and return the amount of the excess liquid, or 0 if there is no excess. For

instance, suppose we have a WaterBottle w with capacity 10 and amountFilled 5.

Then, if we execute w.pour(7), amountFilled should be set to 10 and 2 should be

returned. Your solution must fit within the blanks provided. You may not need all

the lines.

1 class WaterBottle ______________ Container {

2 private static final int DEFAULT_CAPACITY = 16;

3

4 /* The capacity of the container, i.e. the maximum amount of liquid the water bottle can hold */

5 private int capacity;

6

7 WaterBottle() {

8 this(DEFAULT_CAPACITY);

9 }

10 WaterBottle(int capacity) {

11 this.capacity = capacity;

12 this.amountFilled = 0;

13 }



14

15 @Override

16 public int pour(int amount) {

17 _____________________________________;

18 if (_________________________________) {

19 _________________________________;

20 _________________________________;

21 _________________________________;

22 }

23 _____________________________________;

24 }

25 }

c) (4 Points). Finally, suppose we have the ContainerList class, with the drainFirst

method as implemented below. Unfortunately, the drainFirst method sometimes

errors!

In order to fix it, you may add code to the ContainerList constructor and the

UnknownContainer class! You may only use 5 lines of code in the ContainerList

constructor and add 4 lines of code to the UnknownContainer class! If you decide

to keep or modify the given line in the ContainerList constructor, it counts as one

of the 5 lines.

Note that, after making your changes, the drainFirst should never error and re-

tain the functionality in the docstring. You may not modify the drainFirst

method! You may use classes from the previous part assuming they are imple-

mented correctly.

Hint: Make sure that, with your fix, the drainFirst method won’t error, even if

the drainFirst method is called many times.

1 class UnknownContainer ___________________ {

2 // TODO

3

4

5

6

7

8 } // You may add at most 4 lines of code to the class above

9 // i.e. the closing bracket should be on line 6 or earlier

10

11 class ContainerList {

12 private Container[] containers;

13

14 ContainerList(Container[] conts) {

15 this.containers = conts; // you may delete, modify, or keep this line

16 // YOUR CODE HERE

17

18



19

20

21

22 } // You may use at most 5 lines of code in the Constructor

23 // i.e. the closing bracket should be on line 18 or earlier

24

25 /* Drains the water from the first nonempty container */

26 void drainFirst() {

27 int index = 0;

28 while (!containers[index].drain()) {

29 index += 1;

30 }

31 }

32 }


