DUIDE TO ASYMPTOTICS OF TREE RECURSION

STEPS Void f(int N) &
1. Draw out the recursive tree if $(N > 0)$ &
-> a node for every function call g(N); /g(N) EO(1)
($N \leftarrow input size$ $f(N/2);$
() work done for $f(N/2)$;
N/2 N/2 Call 3
N/4
(1) (1) —> usually 3 levels is enough!

3. Recognize which sum we are dealing with:

- "arithmetic" sum: 1+2+3+4...+N~N²

→ "dominating" sum: 1+2+4+8++N~N
-> "Constant" sum: N+N+N +N ~ N2
> (mady always needed) calculate height of tree
-> First, notice that our sum is 1+2+4+ which matches
the dominating sum shown above. All we need is the last term.
I Notice further that each level does there work, where level 0 is
when the input size is N and the levels count down.
-) Finally, we see that the last term in this sequence is 2th,
where It is the height of the tree or logan
4. Output final answer!
We get $2^{\log_2 N} \rightarrow O(N)$