Guide to asymptotics of tree recursion

STEPS

1. Draw out the recursive tree
\rightarrow a node for every function call

\longrightarrow usually 3 levels is enough!
2. Determine work per level (using recursive tree from above) work per level

3. Recognize which sum we are dealing with:
\rightarrow "arithmetic sum: $1+2+3+4 \ldots+N \sim N^{2}$
\rightarrow "dominating" sum: $1+2+4+8+\ldots+N \sim N$
\rightarrow "constant" Sum: $\underbrace{N+N+N \ldots+N}_{N} \sim N^{2}$
\longrightarrow (really always needed) calculate height of tree
\rightarrow First, notice that our sum is $1+2+4+\ldots$ which matches the dominating sum shown above. All we need is the last term.
\rightarrow Notice further that each level does $2^{\text {level }}$ work, where level 0 is when the input size is N and the levels count down.
\rightarrow Finally, we see that the last term in this sequence is 2^{H}, where H is the height of the tree, or $\log _{2} N$
4. Output final answer!

We get $2^{\log _{2} N} \rightarrow \theta(N)$

