







































































































COMPARISON SORTS 8

For each 8 Stable

space complexityHow it is implemented

Best case and worst
case rontimes and Wky

why would we use it










































































































SELECTION SORT8

move minimum of unsorted to the left

7 I 9 4 3 56 2

I 7 9 4 3 5 6 2

I 2 9 4 3 5 6 7

I 2 3 4 9 5 6 7

findingfirstminimum
RUNTOME 8 em

Best case N N N f t N 2T I

worst case 80 N T
findingsecond

WHY USE minimum

1 Simple to code
2 Minimize swapping operations only N swaps
3 Pretty bad overall though

UNDERSTANDING
QUESTION8 Is selection sort stable










































































































Stability Two elements that are the equal
are orderedthesame in final result as
in original list

ANSWER Yes if selection oort is implemented

such that we only change the current
minimum if we find somethingStrictly less

INSERTION SORT8

Build sorted sublist on left side of list
to

7 I 9 4 3 5 6 2
to

7 I 9 4 3 5 6 2
to

I 7 9 4 3 5 6 2
to

I 7 9 4 3 5 6 2
to

I 4 7 9 3 5 6 2

RUNTOME
Best case GCN list sorted in ascending

order

worst case I 0 NZ list sorted in descending
order










































































































Order
WHY USE

I Very fast on small inputs nets

2 Very fast when the input list is nearly sorted

UNDERSTANDING
QUESTION8 The runtime of insertion sort

can be written as 0 N t K

k of inns Why
Recall that an inversion is a pair of elements Hy
where precedes y but is greater than y
E g 7,37 is an inversion because 7 3

Disa
ANSWER we can think of K as the
total number of swapping operations
that need to be done i e for every
inversion we need one swap

Looking at the array above notice that 2
is the right element in 2 pairs 7,27 3,27
Accordinglywhen we move 2 tothe left we need 2 swaps










































































































HEAP SORT
1 Bottom up heapification to

build a matheap
bubble down everyone from the end

7 I 9 4 3 56 2

pity I
9 4 7 2 3 s 6 I

2 Repeat N times I 1
removeMax andput max at end
bubble down to create smaller 1

maxheap while growing sorted array
from righthand side of array

9 4 7 2 3 s 6 I

regmovemin swap 9 and I

I 4 7 2 3 s 6 9
bunbble town I

7 4 6 2 3 or I 9
reymovemin swap 9 and I

I 4 6 2 3 or 7 9
bunbble town I

6 4 5 2 3 7 9










































































































all

RONTOME y
duplicates

Best case OCT HeapB an

Bubble
gOCNlognworst Case 8 OCN10gal down

operationsWHY USE

1 Good worst case bound

2 If we already are given a heap
3 In place i.e constant space complexity

UNDERSTANDING
QUESTION8 Suppose you had a magical

Matheap with constant time for bubbleDown
how would theworst case runtime change
if at all

Answer 8 OCN We have a bubble down
operations each taking ou time Ocn










































































































MERGESORT

keep merging runs together starting with runs of size
zero one

7 I 9 4 3 5 6

27I 9 4 3 5 6 2

I 7 4 9 3 5 2 6

I 4 7 9 23 5 6

I 2 3 4 S 6 7 9 N

N
recursive

Runtime tree 1 1 Nk

Best case GCNlog N Nk Nk

CNlognworst case O I 11
i e

WHY USE

good worst case
bound

stable often used w objects

good with linked lists










































































































UNDERSTANDING
Question How could you change

mergesort with as little work as
possible to lose stability

ANSWER First lets recall why merge sort is stable

In the merging process we break ties by choosing
the element from the left sublist Now to lose stability
we can simplybreak ties by choosing from the right

QuickSORT
3 Scan

Choose a pivot and partition into 3 groups
those smaller than pivot equal and greater

recurse on each group
Pivot

7 4 9 I 3 5 6 2 partition 2

partition i f
4 I 3 s 6 2 7 9

partition 2

I 3 2 4 s 6 7 9
i










































































































Hoare Partitioning

2 pointers L G that start at left right ends
L likes small items and 6 likesbig ones

move pointers to eachother shopping on disliked item
If both stopped swap and more pointers

Done when pointers cross then swap 6 pivot

Pivot

7 4 9 I 3 5 6 2
T T
L G

Pivot

7 4 9 I 3 5 6 2
T T

Pivot
L Time to swap y

7 4 2 I 3 5 6 9
p t
u swapped

Pivot

7 4 2 I 3 5 6 9
T TG passed L G L

G 4 2 I 3 5 7 9
T T

SwappedG andpivot 6 L

DONE










































































































WHY USE

The fastest sort
In place with Hoare
Stable with 3 scan

RUNTOME of we choose a
good pivot eachBest case CNlogN time

worst Case 8 G N if the list is given
in sorted order

UNDERSTANDING
QUESTION8 Hoare Partitioning may not be

stable

but can it be Show an example of a 5 element

list with duplicates where Hoare partitioning is stable

or prove it cannot be done Recall that both L

and G stop on equal elements

ANSWER 3 I 1 I 2

As shown in the example above just because a sorting
algorithm is not stable it doesn't mean it always
breaks stability while sorting


