
Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: Θ(), Worst Case: Θ()

(b) We can only swap adjacent elements in selection sort.

Best Case: Θ(), Worst Case: Θ()

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ(), Worst Case: Θ()

(d) We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.

Best Case: Θ(), Worst Case: Θ()

(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

Best Case: Θ(), Worst Case: Θ()

• There is exactly 1 inversion

Best Case: Θ(), Worst Case: Θ()

• There are exactly (N2 −N)/2 inversions

Best Case: Θ(), Worst Case: Θ()

