
A Wordsearch
Here is a video walkthrough of the solutions.

Here is justification of the runtime.

Given an N by N wordsearch and N words, devise an algorithm to solve the word-

search in O(N3). For simplicity, assume no word is contained within another, i.e.

if the word ”bear” is given, ”be” wouldn’t also be given.

If you are unfamiliar with wordsearches or want to gain some wordsearch solving

intuition, see below for an example wordsearch. Note that the below wordsearch

doesn’t follow the precise specification of an N by N wordsearch with N words, but

your algorithm should work on this wordsearch regardless.

Example Wordsearch:

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation

helpful. Recall that longestPrefixOf accepts a String key and returns the longest

prefix of key that exists in the Trie, or null if no prefix exists.

Algorithm: Begin by adding all the words we are querying for into a Trie. Next,

we will iterate through each letter in the wordsearch and see if any words start with

that letter. For a word to start with a given letter, note that it can go in one of

eight directions — N, NE, E, SE, S, SW, W, NW.

Looking at each direction, we will check if the string going in that direction has a

prefix that exists in our Trie, which we can do using longestPrefixOf. Note that

words are not nested inside of others, so at most one word can start from a given

letter in a given direction. As such, if longestPrefixOf returns a word, we know it

is the only word that goes in that direction from that letter.

https://youtu.be/ynUkvpOUTec
https://youtu.be/jEv4xJTjolU
https://algs4.cs.princeton.edu/52trie/TrieST.java.html


For instance, if we are at the letter ”S” in the middle of the top row of the wordsearch

above and are considering the direction west, we would want to see if the string "

SOHUMC" has a prefix that exists in the given wordsearch. To efficiently perform this

query, we call longestPrefixOf("SOHUMC"), which, in this case, returns "SOHUM",

and we proceed by removing "SOHUM" from our Trie to signal that we found the

word "SOHUM".

We will repeat this process until the all the words have been found, i.e. when the

Trie is empty. Finally, note that this is a very open ended problem, so this is one

of many possible solutions.

Runtime: We look at N2 letters. At each letter, we execute eight calls to longestPrefixOf

which runs in time linear to the length of the inputted string, which can be of at

most length N , since that is the height and width of the wordsearch. Thus, if we

perform on the order of N work per letter and we look at N2 letters, the runtime

is O(N3).


