20

21

22

23

24

25

26

27

28

29

30

31

Iterator Of Iterators

Here is a video walkthrough of the solutions.

Implement an IteratorOfIterators which will accept as an argument a List of
Iterator objects containing Integers. The first call to next() should return the
first item from the first iterator in the list. The second call to next () should return
the first item from the second iterator in the list. If the list contained n iterators,
the n+1th time that we call next(), we would return the second item of the first

iterator in the list.

Note that if an iterator is empty in this process, we continue to the next iterator.
Then, once all the iterators are empty, hasNext should return false. For example,
if we had 3 Iterators A, B, and C such that A contained the values [1, 3,
4, 5], B was empty, and C contained the values [2], calls to next() for our
IteratorOfIterators would return [1, 2, 3, 4, 5].

import java.util.x;
public class IteratorOflIterators {

public IteratorOfIterators(List<Iterator<Integer>> a) {

@Override
public boolean hasNext() {

@Override
public Integer next() {


https://youtu.be/2QPNzIClYnw

20

21

22

23

24

25

26

27

28

29

30

}
Solution: Here is a video walkthrough of the solution.

public class IteratorOfIterators implements Iterator<Integer> {
LinkedList<Iterator<Integer>> iterators;

public IteratorOfIterators(List<Iterator<Integer>> a) {
iterators = new LinkedList<>();
for (Iterator<Integer> iterator : a) {
if (iterator.hasNext()) {
iterators.add(iterator);

@Override
public boolean hasNext() {
return !iterators.isEmpty();

@0verride
public Integer next() {
if ('hasNext()) {
throw new NoSuchElementException();
}
Iterator<Integer> iterator = iterators.removeFirst();
int ans = iterator.next();
if (iterator.hasNext()) {
iterators.addLast(iterator);
}

return ans;

b

Explanation: In the constructor, we make sure the iterator is not empty and add it
to our list of possible iterators. For hasNext, we make sure that there is an iterator
for us to use.

For next, we first make sure that there is a possible next element. If so, we get
the next element from the current iterator by removing the front of our list. If
the iterator still has elements left, we put it back on the end of the list for future

iterations.


https://youtu.be/2QPNzIClYnw

20

21

22

23

24

25

26

27

Alternate Solution: Although this solution provides the right functionality, it is

not as efficient as the first one.

public class IteratorOfIterators implements Iterator<Integer> {
LinkedList<Integer> 1;

public IteratorOfIterators(List<Iterator<Integer>> a) {
1 = new LinkedList<>();
while (!a.isEmpty()) {
Iterator<Integer> curr = a.remove(9);
if (curr.hasNext()) {
1.add(curr.next());
a.add(curr);

@Override
public boolean hasNext() {
return !1.isEmpty();

@Override
public Integer next() {
if('hasNext()) {
throw new NoSuchElementException();

b

return 1.removeFirst();

}

Explanation: This solution is essentially the same as the first, except we preprocess
all the elements from all iterators before going into hasNext or next. This is less
efficient because we may not need all these elements; for example, what if there are

a million elements but our iterator is only called twice?



