Fven Odd

Here is a video walkthrough of the solutions.

Implement the method evenOdd by destructively changing the ordering of a given
IntList so that even indexed links precede odd indexed links.

For instance, if 1st is defined as IntList.list(@, 3, 1, 4, 2, 5), evenOdd(1lst)
would modify 1st to be IntList.list(@, 1, 2, 3, 4, 5).

You may not need all the lines.
Hint: Make sure your solution works for lists of odd and even lengths.

public class IntList {
public int first;
public IntList rest;
public IntList (int f, IntList r) {
this.first = f;
this.rest = r;

public static void evenOdd(IntList 1st) {

if () {

return;

while () {

https://youtu.be/bfAOCQPhUPw

Solution:

public static void evenOdd(IntList 1st) {

if (Ist == null || Ist.rest == null) {
return;

}

IntList oddList = lst.rest;

IntList second = lst.rest;

while (Ist.rest != null && oddList.rest != null) {
Ist.rest = 1lst.rest.rest;
oddList.rest = oddList.rest.rest;
1st = 1st.rest;
oddList = oddList.rest;

3

1st.rest = second;

Alternate Solution:

public static void evenOdd(IntList 1st) {

if (Ist == null || 1st.rest == null || Ist.rest.rest == null) {
return;

3

IntList second = lst.rest;

int index = 0;

while (!(index % 2 == @ && (Ist.rest == null || Ist.rest.rest == null))) {
IntList temp = lst.rest;
lst.rest = lst.rest.rest;
1st = temp;
index++;

3

lIst.rest = second;

3

Explanation: For any linked list, observe that we simply want to change the rest
attribute of each IntList instance to skip an IntList instance. Looking at 1st, we
want to link 0 to 1, 3 to 4, and so on. This will constitute the work of the body of
the while loop, so we just to need to figure out how to link the last even indexed
IntList instance to the first odd indexed IntList instance. To keep track of the
first odd indexed IntList instance, we can use second. Now, we just need to exit
the while loop when we are at the last even indexed IntList instance. This occurs
when the index is even and we are either at the second to last element (1st.rest.
rest == null) or the last element (1st.rest == null).

