
Bears and Beds
Here is a video walkthrough of the solutions.

The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help

them place their customers in the best possible homes to improve their experience.

They are currently in their alpha stage so their only customers (for now) are bears.

Now, a little known fact about bears is that they are very, very picky about their

bed sizes: they do not like their beds too big or too little - they like them just right.

Bears are also sensitive creatures who don’t like being compared to other bears, but

they are perfectly fine with trying out beds.

The Problem:

Given a list of Bears with unique but unknown sizes and a list of Beds with corre-

sponding but also unknown sizes (not necessarily in the same order), return a list

of Bears and a list of Beds such that that the ith Bear in your returned list of Bears

is the same size as the ith Bed in your returned list of Beds. Bears can only be

compared to Beds and we can get feedback on if the Bed is too large, too small,

or just right. In addition, Beds can only be compared to Bears and we can get

feedback if the Bear is too large for it, too small for it, or just right for it.

The Constraints:

Your algorithm should run in O(N logN) time on average. It may be helpful to

figure out the naive O(N2) solution first and then work from there.

Solution:

Our solution will modify quicksort. Let’s begin by choosing a pivot from the Bears

list. To avoid quicksort’s worst case behavior on a sorted array, we will choose a ran-

dom Bear as the pivot. Next we will partition the Beds into three groups — those

less than, equal to, and greater than the pivot Bear. Next, we will select a pivot

from the Beds list. This is very important — our pivot Bed will be the Bed that is

equal to the pivot Bear. Given that the Beds and Bears have unique sizes, we know

that exactly one Bed will be equal to the pivot Bear. Next we will partition the

Bears into three groups — those less than, equal to, and greater than the pivot Bed.

Next, we will ”match” the pivot Bear with the pivot Bed by adding them to the

Bears and Beds lists at the same index, which is as easy as just adding to the end.

Finally, in the same fashion as quicksort, we will have two recursive calls. The first

recursive call will contain the Beds and Bears that are less than their respective

pivots. The second recursive call will contain the Beds and Bears that are greater

than their respective pivots.

https://youtu.be/EF3_vcXADfc

