
Asymptotics of Weighted Quick Unions
Here is a video walkthrough of all parts of this problem.

For this problem, we will be addressing the asymptotics of Weighted Quick Unions!

For all big Ω and big O bounds, give the tightest bound possible.

(a) Suppose we have a Weighted Quick Union (WQU) without path compression

with N elements.

1. What is the runtime, in big Ω and big O, of isConnected?

Ω(______), O(______)

2. What is the runtime, in big Ω and big O, of connect?

Ω(______), O(______)

Solution:

1. Ω(1), O(log(N))

2. Ω(1), O(log(N))

(b) Suppose for the following problem we add the method addToWQU to the WQU

class. Simply put, the method takes in a list of elements and randomly

connects elements together. Assume that all the elements are disconnected

before the method call, and the connect method works as described in lecture.

1 void addToWQU(int[] elements) {

2 int[][] pairs = pairs(elements);

3 pairs = shuffle(pairs);

4 for (int[] pair: pairs) {

5 connect(pair[0], pair[1]);

6 }

7 }

In a bit more detail, the pairs method accepts an array and returns an ordered

array of all unique pairs, where each pair is a 2 element array. For instance,

1 pairs(new int[]{1, 2, 3})

would return

1 {{1, 2}, {1, 3}, {2, 3}}

The shuffle method shuffles the ordering of the elements, and returns a new

array. For instance,

1 shuffle(new int[]{{1, 2}, {1, 3}, {2, 3}})

might return

1 {{1, 3}, {2, 3}, {1, 2}}

Assume, for simplicity, that pairs and shuffle run in constant time (admit-

tedly this couldn’t be the case, but assume so for the sake of this problem).

https://youtu.be/rmIHEjWuX6s


What is the runtime of addToWQU in big O? For this and all remaining subparts

you may write your answer in terms of N, where N is elements.length.

addToWQU runtime: O(______)

Solution:

addToWQU runtime: O(N2log(N))



For the remainder of this problem, suppose we are using the modified version of

addToWQU as defined below. Note the only difference is the added if condition.

1 void addToWQU(int[] elements) {

2 int[][] pairs = pairs(elements);

3 pairs = shuffle(pairs);

4 for (int[] pair: pairs) {

5 if (size() == elements.length) {

6 return;

7 }

8 connect(pair[0], pair[1]);

9 }

10 }

Assume the method size calculates the size of the largest connected component

and runs in constant time (this can be easily implemented with adding an

instance variable to the class).

(c) What is the runtime of addToWQU in big Ω and big O?

Ω(______), O(______)

Solution:

Ω(N), O(N2log(N))

(d) Let us define a matching size connection as connecting two trees, i.e. com-

ponents in a WQU, together of matching size. For instance, suppose we have

two trees, one with values 1 and 2, and another with the values 3 and 4. Calling

connect(1, 4) is a matching size connection since both trees are the same size.

What is the minimum and maximum number of matching size connections

that can occur after executing addToWQU. Assume N, i.e. elements.length, is

a power of two. Your answers should be exact.

minimum: _____, maximum: _____

Solution:

minimum: 1, maximum: N - 1


