
LLRBs
a) (2 Points). Perform the following insertions on the Left Leaning Red Black

Tree (LLRB) given below. For each insertion, give the fix up operations needed.

Recall a fix up operation is one of the following:

• rotateLeft

• rotateRight

• colorFlip

• change the root node to black.

Note that insertions are dependent. If only two operations are necessary, pick

“None” for the third operation. If only one operation is necessary, pick “None” for

the second and third operation. If no operations are necessary, pick “None” for all

three operations.

If you put “None” for the “Operation applied”, leave the “Node to apply on”

blank. (Summer 2021 MT2)

i) (0.5 Points). Insert 17

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

ii) (0.5 Points). Insert 15. Note that insertions are dependent, so insert 15 into

the state of the LLRB after the insertion of 17.



Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

iii) (0.75 Points). Insert 13. Note that insertions are dependent, so insert 13 into

the state of the LLRB after the insertion of 15.

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

iv) (0.75 Points). Insert 19. Note that insertions are dependent, so insert 19 into

the state of the LLRB after the insertion of 13.

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None



b) (1.5 Points). The tree below is not a valid LLRB (hint: to see why this is

the case, draw the corresponding 2-3 tree) but it’s close! In this part, we will try

to transform it into a valid LLRB in two different ways. Note that each way acts

independently of the previous. If a way isn’t possible, put impossible. Recall

that LLRBs cannot have duplicates.

i) (0.75 Points). Way 1: Remove a single leaf node from the tree. Which leaf

node?

© 2 © 4 © 8 © 10 © 12 © 14 © 16 © impossible

ii) (0.75 Points). Way 2: Flip the color of a single node. Which node?

© 2 © 4 © 8 © 10 © 12 © 14 © 16 © impossible


