
Aliens Arrive at Moon Base
a) Suppose the aliens have received a landing code as a series of strings, but it’s all

scrambled up! Help them sort the strings so they can land on the moon base! More

specifically, suppose we want to sort N distinct Strings, each of length W , that

are comprised of characters from an alien alphabet of size N2. We can visualize the

set of strings to sort as the image below.

What are the runtimes of the following sorting algorithms, in the best and worst

case? If we use some sorting algorithm, say quicksort, as the subroutine in LS-

D/MSD sort, that means we use quicksort to sort each character. If two Strings

are distinct, that means that at least one character differs. Finally, if the sorting

algorithm provided would not work, select “Would Not Work” for the best

and worst case. Your answers may involve both W and N .

Hint: When we compare two strings, it takes constant time in the best case, and

W time in the worst case.

i) Merge sort

Best Case: © Θ(1) © Θ(logN) © Θ(N) © Θ(NlogN) © Θ(N2)

© Θ(N2)logN) © Θ(logW ) © Θ(W ) © Θ(WlogW ) © Θ(W 2)

© Θ(W 2logW ) © Θ(WlogN) © Θ(WN) © Θ(WNlogN) © Θ(WN2)

© Θ(WN2logN) © Θ(NlogW ) © Θ(NWlogW ) © Θ(NW 2) © Θ(NW 2logW )

© Θ(N2W 2) © Never terminates (infinite loop) © None of the above Would

Not Work

Worst Case:

© Θ(1) © Θ(logN) © Θ(N) © Θ(NlogN) © Θ(N2) © Θ(N2)logN)

© Θ(logW ) © Θ(W ) © Θ(WlogW ) © Θ(W 2) © Θ(W 2logW )

© Θ(WlogN) © Θ(WN) © Θ(WNlogN) © Θ(WN2) © Θ(WN2logN)

© Θ(NlogW ) © Θ(NWlogW ) © Θ(NW 2) © Θ(NW 2logW )

© Θ(N2W 2) © Never terminates (infinite loop) © None of the above

Would Not Work



ii) Insertion sort

Best Case:

© Θ(1) © Θ(logN) © Θ(N) © Θ(NlogN) © Θ(N2) © Θ(N2)logN)

© Θ(logW ) © Θ(W ) © Θ(WlogW ) © Θ(W 2) © Θ(W 2logW )

© Θ(WlogN) © Θ(WN) © Θ(WNlogN) © Θ(WN2) © Θ(WN2logN)

© Θ(NlogW ) © Θ(NWlogW ) © Θ(NW 2) © Θ(NW 2logW )

© Θ(N2W 2) © Never terminates (infinite loop) © None of the above

Would Not Work

Worst Case:

© Θ(1) © Θ(logN) © Θ(N) © Θ(NlogN) © Θ(N2) © Θ(N2)logN)

© Θ(logW ) © Θ(W ) © Θ(WlogW ) © Θ(W 2) © Θ(W 2logW )

© Θ(WlogN) © Θ(WN) © Θ(WNlogN) © Θ(WN2) © Θ(WN2logN)

© Θ(NlogW ) © Θ(NWlogW ) © Θ(NW 2) © Θ(NW 2logW )

© Θ(N2W 2) © Never terminates (infinite loop) © None of the above

Would Not Work

iii) MSD sort with heap sort as the subroutine.

Best Case:

© Θ(1) © Θ(logN) © Θ(N) © Θ(NlogN) © Θ(N2) © Θ(N2)logN)

© Θ(logW ) © Θ(W ) © Θ(WlogW ) © Θ(W 2) © Θ(W 2logW )

© Θ(WlogN) © Θ(WN) © Θ(WNlogN) © Θ(WN2) © Θ(WN2logN)

© Θ(NlogW ) © Θ(NWlogW ) © Θ(NW 2) © Θ(NW 2logW )

© Θ(N2W 2) © Never terminates (infinite loop) © None of the above

Would Not Work

Worst Case:

© Θ(1) © Θ(logN) © Θ(N) © Θ(NlogN) © Θ(N2) © Θ(N2)logN)

© Θ(logW ) © Θ(W ) © Θ(WlogW ) © Θ(W 2) © Θ(W 2logW )

© Θ(WlogN) © Θ(WN) © Θ(WNlogN) © Θ(WN2) © Θ(WN2logN)

© Θ(NlogW ) © Θ(NWlogW ) © Θ(NW 2) © Θ(NW 2logW )

© Θ(N2W 2) © Never terminates (infinite loop) © None of the above

Would Not Work

b) For the following two parts, we will be calling LSD sort with conventional

LSD sort as the subroutine! Conventional LSD sort uses counting sort as the

subroutine. Since conventional LSD sort requires that the objects it’s comparing are

comprised of digits of a fixed radix, or base, we will decompose each character

from the alien alphabet into a number of a certain radix. We can visualize the first

pass of the sorting algorithm as shown in the image below.



For each part below, find only the worst case runtime of calling LSD sort with

LSD sort as the subroutine, if we decompose each character into a number of

the given radix.

Here are some helpful hints before you begin.

• If we decompose a character of size M into a number of radix B, the number

of digits in the resulting number is logBM .

• logBB = 1.

• logBM
a = a× logBM .

i) Radix 10.

© Θ(1) © Θ(logN) © Θ(N) © Θ(NlogN) © Θ(N2) © Θ(N2)logN)

© Θ(logW ) © Θ(W ) © Θ(WlogW ) © Θ(W 2) © Θ(W 2logW )

© Θ(WlogN) © Θ(WN) © Θ(WNlogN) © Θ(WN2) © Θ(WN2logN)

© Θ(NlogW ) © Θ(NWlogW ) © Θ(NW 2) © Θ(NW 2logW )

© Θ(N2W 2) © Never terminates (infinite loop) © None of the above

Would Not Work

ii) Radix N.

© Θ(1) © Θ(logN) © Θ(N) © Θ(NlogN) © Θ(N2) © Θ(N2)logN)

© Θ(logW ) © Θ(W ) © Θ(WlogW ) © Θ(W 2) © Θ(W 2logW )

© Θ(WlogN) © Θ(WN) © Θ(WNlogN) © Θ(WN2) © Θ(WN2logN)

© Θ(NlogW ) © Θ(NWlogW ) © Θ(NW 2) © Θ(NW 2logW )

© Θ(N2W 2) © Never terminates (infinite loop) © None of the above

Would Not Work


